Благодаря каким свойствам липиды способны образовывать мембраны

Как осуществляется обмен между липидами?

Обмен между липидами — это процесс, происходящий на клеточном уровне и имеет биохимическую основу.

Процессы происходят в строгой последовательности, и каждый имеет свою характеристику:

Процесс обмена Характеристика процесса
Фосфолипидный обмен · фосфолипиды распределены в организме не равномерно;
· 50,0% от всех молекул содержатся в плазменной крови и в клетках печени;
· обменные процессы зависят от типов фосфолипидов и могут продолжаться от 1 дня до 200 дней.
Обмен холестерола · 80,0% молекул синтезируется в клетках печени;
· 20,0% попадает в организм с едой;
· избыточный холестерол выводится при помощи кишечника.
Катаболизм жиросодержащих кислот · происходит в процессе β-окисления;
· достаточно редко принимает участие α- окисления или же ω-окисления.
Липогенез · синтезирование молекул липидов, которое происходит в клетках печени;
· также транспортировка липидов из тонкого отдела кишечника.
Липолиз · при участии липазы происходит процесс катаболизма;
· расщепление низкомолекулярных молекул холестерина в клетках печени при помощи желчных кислот.
Процесс синтезирования кетоновых тел · молекулы ацетоацетил-КоА начинают данный тип процесса синтеза.
Взаимопревращение жиросодержащих кислот · из кислот, содержащих липиды в клетках печени, начинается взаимопревращение их в кислоты, которые наиболее свойственны и необходимы человеку.

Очень важно, чтобы процесс обмена липидами был всегда в норме, поэтому необходимое количество извне, человек должен получать с пищей. Только необходимо контролироваться процесс питания и не употреблять холестерин с продуктами питания больше, чем 70,0 грамм — 140,0 грамм в сутки

Норма в сутки употребления жира зависит от состояния организма и от сопутствующих патологий, особенно сердечных патологий и заболеваний системы кровотока, при которых потребление холестерина извне, нужно сократить до минимума.

Не стоит забывать, что отказываться от холестерина совсем нельзя, и употребление животных продуктов с низким содержанием животного жира не нарушит процесс взаимодействия липидов.

Липиды в диете человека

Среди липидов в диете человека преобладают триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимы для всасывания жирорастворимых витаминов. Насыщенными жирными кислотами богата пища животного происхождения: мясо, молочные продукты, а также некоторые тропические растения, такие как кокосы. Ненасыщенные жирные кислоты попадают в организм человека в результате употребления орехов, семечек, оливкового и других растительных масел. Основными источниками холестерола в рационе является мясо и органы животных, яичные желтки, молочные продукты и рыба. Однако около 85 % процентов холестерола в крови синтезируется печенью. Организация American Heart Association рекомендует употреблять липиды в количестве не более 30 % от общего рациона, сократить содержание насыщенных жирных кислот в диете до 10 % от всех жиров и не принимать более 300 мг (количество, содержащееся в одном желтке) холестерола в сутки. Целью этих рекомендаций является ограничение уровня холестерола и триглицеридов в крови до 20 мг / л.

Суточная потребность взрослого человека в липидах — 70—145 граммов.

Белки плазматической мембраны

Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое — 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной — до 50%.

Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические.

1. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:

  • водородные связи;
  • ионные взаимодействия или солевые мостики;
  • электростатическое притяжение.

Сами периферические белки — растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное — фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.

Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:

  • формирование цитоскелета клетки;
  • поддержание постоянной формы;
  • ограничение излишней подвижности интегральных белков;
  • координация и осуществление транспорта ионов через плазмолемму;
  • могут соединяться с олигосахаридными цепями и участвовать в рецепторной передаче сигналов от мембраны и к ней.

2. Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также «заякоренными» белками, то есть будто прикрепленными внутри слоя. С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином. У растений и бактерий таких пока не обнаружено.

3. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь. Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур — формирование ионных каналов для транспорта.

Существует два типа пронизывания липидного слоя:

  • монотопное — один раз;
  • политопное — в нескольких местах.

К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно. По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный — над ним, причем может возвышаться над всей структурой. За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.

Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов.

  1. Структурные периферические белки.
  2. Каталитические белки-ферменты (полуинтегральные и интегральные).
  3. Рецепторные (периферические, интегральные).
  4. Транспортные (интегральные).

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Эйкозаноиды

Эйкозаноиды относятся к простым в строении молекул липидов, и отвечают за регуляторные функции в организме человека. Данные липиды имеют уникальную структуру и химическую формулу, что обеспечивает их такими свойствами.

Арахидоновая кислота есть основой для формирования и синтезирования молекул эйкозаноидов.

Данная кислота относится к категории полиненасыщенных жиром кислот, что гарантируют молекулам эйкозаноидов такие свойства и функции в организме:

  • Корректирует в организме процессы воспаления;
  • Занимается повышением проницаемости артериальных оболочек, что происходит при процессе видоизменения в них;
  • Активизируют выход из состава ткани иммунной системы молекул лейкоцитов;
  • Помогают иммунной системе производить выброс ферментов, которые захватывают чужеродные вещества, а также инфекционных и вирусных агентов.

Также молекулы эйкозаноидов принимают активное участие в функционировании системы гемостаза и корректируют процесс свёртывания состава плазменной крови.

Они могут способствовать правильному свёртыванию — если есть необходимость, расширить артериальные оболочки, эйкозаноиды расширяют ее, снимая агрегацию состава крови.

Если потребуется усилить тромбообразование, тогда эйкозаноиды приводят к сокращению мышечные структуры артериальных оболочек, что способствует остановке кровотечения и образования тромба.


Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Примечания

  1. 1 2 3 Липиды // Большой энциклопедический словарь.
  2. ↑ Липиды / Л. Д. Бергельсон // Большая советская энциклопедия :  / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. 1 2 Народицкий Борис Савельевич, Ширинский Владимир Павлович, Нестеренко Людмила Николаевна. Липид. Роснано. Дата обращения 8 марта 2012. Архивировано 23 июня 2012 года.
  4. ↑ 2ai2  (недоступная ссылка с 21-05-2013  — историякопия)
  5. ↑ biochem/index.htm (недоступная ссылка)  (недоступная ссылка с 21-05-2013  — историякопия)
  6. 1 2 3 4 5 Nelson D.L., Cox M.M. Lehninger Principles of Biochemistry. — 5th. — W. H. Freeman (англ.)русск., 2008. — ISBN 978-0-7167-7108-1.
  7. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. — 5th. — Garland Science (англ.)русск., 2007. — ISBN 978-0-8153-4105-5.
  8. 1 2 Marieb E. N., Hoehn K. Human Anatomy & Physiology. — 7th. — Benjamin Cummings (англ.)русск., 2006. — ISBN 978-0805359091.
  9. 1 2 Omega-3 fatty acids

Значение

Липиды должны поступать в организм вместе с пищей и участвовать в метаболизме. В зависимости от типа жиры выполняют в организме разнообразные функции:

  • триглицериды сохраняют тепло организма;
  • подкожный жир защищает внутренние органы;
  • фосфолипиды входят в состав мембран любой клетки;
  • жировая ткань является резервом энергии – расщепление 1 г жира даёт 39 кДж энергии;
  • гликолипиды и ряд других жиров выполняют рецепторную функцию – связывают клетки, получая и проводя сигналы, полученные из внешней среды;
  • фосфолипиды участвуют в свёртываемости крови;
  • воски покрывают листья растений, одновременно предохраняя их от высыхания и промокания.

Избыток или недостаток жиров в организме приводит к изменению обмена веществ и нарушению функций организма в целом.

Что мы узнали?

Жиры имеют сложное строение, классифицируются по разным признакам и выполняют разнообразные функции в организме. Липиды состоят из жирных кислот и спиртов. При присоединении дополнительных групп образуются сложные жиры. Белки и жиры могут образовывать сложные комплексы – липопротеины. Жиры входят в состав плазмалеммы, крови, ткани растений и животных, выполняют теплоизолирующую и энергетическую функции.

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Строение

Липиды по химической природе – один из трёх типов жизненно важных органических веществ. Они практически не растворяются в воде, т.е. являются гидрофобными соединениями, но образуют с Н2О эмульсию. Липиды распадаются в органических растворителях – бензоле, ацетоне спиртах и т.д. По физическим свойствам жиры бесцветны, не имеют вкуса и запаха.

По строению липиды – соединения жирных кислот и спиртов. При присоединении дополнительных групп (фосфора, серы, азота) образуются сложные жиры. Жировая молекула обязательно включает атомы углерода, кислорода и водорода.

Жирные кислоты – алифатические, т.е. не содержащие циклических углеродных связей, карбоновые (группа -СООН) кислоты. Отличаются количеством группы -СН2-.Выделяют кислоты:

  • ненасыщенные – включают одну или несколько двойных связей (-СН=СН-);
  • насыщенные – не содержат двойных связей между атомами углерода

Рис. 1. Строение жирных кислот.

В клетках запасаются в виде включений – капель, гранул, в многоклеточном организме – в форме жировой ткани, состоящей из адипоцитов – клеток, способных накапливать жиры.

Из чего состоят?

Сложные молекулы липидов — это достаточно важная группа жировых компонентов в организме (фосфолипиды, молекулы гликолипидов и сфинголипиды):

  • Жиры вместе с простыми липидными молекулами принимают участие в построении клеточных мембран;
  • Обеспечивают взаимодействие на межклеточном уровне нервных волокон, которые передают импульсы при помощи миелиновых оболочек;
  • Сложные в строении липиды, являются компонентом сурфактанта. Данное вещество обеспечивает правильную работу системы дыхания и ее органов, а также предотвращают спадание среднего диаметра артерий (альвеолы) при выдохе воздуха из организма;
  • Сложного строения липиды играют основные роли на мембранных поверхностях клеток.

Очень велики свойства в деятельности таких органов:

  • Цереброспинальной жидкости;
  • Нервных волокон;
  • Сердечного миокарда.

Основная функция липидов — это построение мембран клеток.

При формировании мембран принимают участие такие типы липидных соединений:

  • Жироподобный спирт — холестерол;
  • Липидо-углеводное соединение гликолипиды;
  • Соединения карбоновых кислот и спиртовых эфиров — фосфолипиды.

Мембрана по своей структуре двухслойная и жиры находятся в пространстве между клеткой и наружной средой. Такая структура клеточной мембраны позволяет ей не терять форму и увеличивает ее крепость.

Содержание липидов в разных клетках сильно варьирует

Свойства и функции клеточной мембраны

Теперь давайте разберем, какие функции выполняет клеточная мембрана:

Барьерная функция клеточной мембраны – мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.

Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи, все это благодаря защитной функции мембраны.

Энергетическая функция – фотосинтез и клеточное дыхание были бы невозможны без участия белка, содержащегося в клеточной мембране. Именно через белковые каналы происходит важный клеточный энергообмен, в этом заключаются самые главные функции белка в клеточной мембране.

Рецепторная функция – и опять возвращаемся к белкам мембраны, помимо собственно энергообмена они обладают еще одной очень важной функцией – они служат рецепторами клеточной мембраны, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса

Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

  • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
  • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
  • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

Транспорт через мембраны: активный, пассивный.

Пассивный
транспорт

перенос веществ по градиенту концентрации,
без затрат энергии (например, диффузия,
осмос). Диффузия — пассивное перемещение
вещества из участка большей концентрации
к участку меньшей концентрации. Осмос
— пассивное перемещение некоторых
веществ через полупроницаемую мембрану
(обычно мелкие молекулы проходят, крупные
не проходят).

Простая диффузия
-частицы вещества перемещаются сквозь
липидный бислой. Направл. ростой диффузии
определяется только разностью концентраций
вещества по обеим сторонам мембраны.
Путём простой диффузии в клетку проникают
гидрофобные вещества (O2,N2,бензол) и
полярные маленькие молекулы (CO2, H2O,
мочевина). Не проникают полярные
относительно крупные молекулы
(аминокислоты, моносахариды), заряженные
частицы (ионы) и макромолекулы (ДНК,
белки).

Облегченная
диффузия

Большинство веществ
переносится через мембрану с помощью
погружённых в неё транспортных белков
(белков-переносчиков). Все транспортные
белки образуют непрерывный белковый
проход через мембрану. С помощью
белков-переносчиков осуществляется
как пассивный, так и активный транспорт
веществ. Полярные вещества (аминокислоты,
моносахариды), заряженные частицы (ионы)
проходят через мембраны с помощью
облегченной диффузии, при участии
белков-каналов или белков-переносчиков.
Участие белков-переносчиков обеспечивает
более высокую скорость облегченной
диффузии по сравнению с простой пассивной
диффузией. Скорость облегченной диффузии
зависит от ряда причин: от трансмембранного
концентрационного градиента переносимого
вещества, от количества переносчика,
который связывается с переносимым
веществом, от скорости связывания
вещества переносчиком на одной поверхности
мембраны (например, на наружной), от
скорости конформационных изменений в
молекуле переносчика, в результате
которых вещество переносится через
мембрану и высвобождается на другой
стороне мембраны. Облегченная диффузия
не требует специальных энергетических
затрат за счет гидролиза АТФ. Эта
особенность отличает облегченную
диффузию от активного трансмембранного
транспорта.

Белки-переносчики

Белки-переносчики
— это трансмембранные белки, которые
специфически связывают молекулу
транспортируемого вещества и, изменяя
конформацию, осуществляют перенос
молекулы через липидный слой мембраны.
В белках-переносчиках всех типов имеются
определенные участки связывания для
транспортируемой молекулы. Они могут
обеспечивать как пассивный, так и
активный мембранный транспорт.

Активный транспорт
— перенос вещества через клеточную или
внутриклеточную мембрану (трансмембранный
А.т.) или через слой клеток (трансцеллюлярный
А.т.), протекающий против электрохимического
градиента, т. е. с затратой свободной
энергии организма. В большинстве случаев,
но не всегда, источником энергии служит
энергия макроэргических связей АТФ.
Различные транспортные АТФазы,
локализованные в клеточных мембранах
и участвующие в механизмах переноса
веществ, являются основным элементом
молекулярных устройств — насосов,
обеспечивающих избирательное поглощение
и откачивание определенных веществ
(например, электролитов) клеткой. Активный
специфический транспорт неэлектролитов
(молекулярный транспорт) реализуется
с помощью нескольких типов молекулярных
машин — насосов и переносчиков. Транспорт
неэлектролитов (моносахаридов, аминокислот
и других мономеров) может сопрягаться
с симпортом — транспортом другого
вещества, движение которого по градиенту
концентрации является источником
энергии для первого процесса. Симпорт
может обеспечиваться ионными градиентами
(например, натрия) без непосредственного
участия АТФ.

Незаменимые жирные кислоты

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3- (линоленовая) и ω-6- (линолевая) полиненасыщенные жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3-кислот: эйозапентаэноевой (EPA) и докозагексаэноевой (DHA). Эти вещества необходимы для работы головного мозга, и положительно влияют на когнитивные и поведенческие функции.

Важно также соотношение ω-6ω-3-жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1:1 до 4:1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3

Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата на линоленовую и другие ω-3-кислоты, источником которых являются зелёные растения (например листья салата), рыба, чеснок, целые злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую жирные кислоты ω-3, рекомендуется принимать рыбий жир.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector