Обо всех рнк на свете, больших и малых
Содержание:
- Кратко о строении РНК
- Что такое рибонуклеиновая кислота?
- Диагностика заболевания
- Участие ДНК и РНК в синтезе белков
- Как и для чего делают ДНК тест?
- ДНК (дезоксирибонуклеиновая кислота)
- Что такое РСБУ в бухгалтерии
- Деление по особенностям
- Рибосомальная рибонуклеиновая кислота
- Способы выделения
- Чтобы не распасться, нужно стабилизироваться
- Пцр диагностика вирусного гепатита с
- Строение
Кратко о строении РНК
Итак, РНК, рибонуклеиновая кислота, – это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу – полинуклеотид. Так образуется первичная структура РНК.
Вторичная структура – образование двойной цепочки – образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином — тройной водородной связи.
В рабочей форме молекула РНК образует также третичную структуру – особое пространственное строение, конформацию.
Что такое рибонуклеиновая кислота?
РНК — это нуклеиновая кислота с мономерами, называющимися рибонуклеотидами.
По химическим свойствам она очень похожа на ДНК, так как обе являются полимерами нуклеотидов, представляющих собой фосфолированный N-гликозид, который выстроен на остатке пентозы (пятиуглеродного сахара), с фосфатной группой пятого углеродного атома и основания азота при первом углеродном атоме.
Она представляет собой одну полинуклеотидную цепочку (кроме вирусов), которая намного короче, чем у ДНК.
Один мономер РНК — это остатки следующих веществ:
- основания азота;
- пятиуглеродного моносахарида;
- кислоты фосфора.
РНК имеют пиримидиновые (урацил и цитозин) и пуриновые (аденин, гуанин) основания. Рибоза является моносахаридом нуклеотида РНК.
Диагностика заболевания
Основной способ инфицирования гепатитом – через кровь. Вирусные агенты, оказавшись в здоровой клетке, вместе с кровотоком достигают печени, где активно размножаются.
Накопление вирионов в зараженных гепатоцитах приводит к разрушению печеночных клеток. Процесс стимулирует выработку антител, которые вступают в борьбу с неповрежденными гепатоцитами, утяжеляя последствия болезни.
Самым надежным способом, позволяющим обнаружить в крови следы вируса, специалисты называют ПЦР анализ. Суть революционного метода полимеразной цепной реакции состоит в обнаружении цепочек вирусных РНК при создании определенной среды, куда помещают взятую на анализ пробу крови. Этапы диагностического процесса:
- После получения отобранного биоматериала в нем тиражируют множество копий РНК, принадлежащих вирусу гепатита С.
- Использованием многофункциональных тестовых систем с нагреванием и очисткой раствора добиваются необходимого количества копий.
- При помощи тестовой диагностики определяют концентрацию в анализируемом образце сформировавшихся генов.
Под аббревиатурой РНК подразумевают рибонуклеиновую кислоту. Важная макромолекула вместе с ДНК присутствует в составе клеток любого живого организма. Молекула РНК, хранящая генетический код вируса гепатита С, склонна мутировать.
В процессе нескольких этапов диагностики происходит трансформация нуклеотидных цепочек с формированием РНК вируса гепатита С, если порция крови пациента содержала фрагменты возбудителя.
Безоговорочная достоверность ПЦР тестирования объясняется высоким уровнем чувствительности полимеразной реакции, обладающей следующими преимуществами:
- Для обнаружения HCV достаточно одного генома вируса на весь объем биоптата;
- Высокая способность к генотипированию для выявления определенного возбудителя;
- Возможность за одно тестирование обнаружить РНК различных типов вирусов.
Проведение лабораторного анализа вооружает специалиста информацией о наличии либо отсутствии РНК вируса в пробе крови. Благодаря тестированию можно определить концентрацию РНК различных типов вирусных частиц.
Участие ДНК и РНК в синтезе белков
– одна из основных функций нуклеиновых кислот. Белки – важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор – взаимоориентация азотсодержащих гетероциклов ДНК и РНК.
Основная задача ДНК – хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК. Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной.
На первой стадии часть двойной спирали раскрывается, освободившиеся ветви расходятся, и на группах А, Т, Г и Ц, оказавшихся доступными, начинается синтез РНК, называемой матричной РНК, поскольку она как копия с матрицы точно воспроизводит информацию, записанную на раскрывшемся участке ДНК. Напротив группы А, принадлежащей молекуле ДНК, располагается фрагмент будущей матричной РНК, содержащий группу У, все остальные группы располагаются друг напротив друга в точном соответствии с тем, как это происходит при образовании двойной спирали ДНК (рис. 13).
По указанной схеме образуются полимерная молекула матричной РНК, содержащая несколько тысяч мономерных звеньев.
На втором этапе матричная ДНК перемещается из ядра клетки в околоядерное пространство – цитоплазму. К полученной матричной РНК подходят так называемые транспортные РНК, которые несут с собой (транспортируют) различные аминокислоты. Каждая транспортная РНК, нагруженная определенной аминокислотой, приближается к строго обусловленному участку матричной РНК, нужное место обнаруживается с помощью все того же принципа взаимосоответствия групп А—У, и Г—Ц. В конечном итоге две аминокислоты, оказавшиеся рядом, взаимодействуют между собой, так начинается сборка будущей белковой молекулы (рис. 14).
Важная деталь состоит в том, что временное взаимодействие матричной и транспортной РНК проходит всего по трем группам, например, к триаде Ц—Ц—У матричной кислоты может подойти только соответствующая ей тройка Г—Г—А транспортной РНК, которая непременно несет с собой аминокислоту глицин (рис. 14). Точно также к триаде Г—А—У может приблизиться лишь набор Ц—У—А, транспортирующий только аминокислоту лейцин. Таким образом, последовательность групп в матричной РНК указывает, в каком порядке должны соединяться аминокислоты. Кроме того, система содержит в закодированном виде дополнительные регулирующие правила, некоторые последовательности из трех групп матричной РНК указывает на то, что в этом месте синтез белка должен остановиться, т.е. молекула достигла необходимой длины.
Показанный на рис. 14 синтез белка проходит с участием еще одного – третьего вида РНКислот, они входят в состав рибосом и потому их называют рибосомными. Рибосома, представляющая собой ансамбль определенных белков рибосомных РНК, обеспечивает взаимодействие матричной и транспортной РНК, играя роль конвейерной ленты, которая передвигает матричную РНК на один шаг после того, как произошло соединение двух аминокислот.
Основной смысл двухстадийной схемы, показанной на рис. 13 и 14, состоит в том, что полимерная цепь белковой молекулы собирается из различных аминокислот в намеченном порядке и строго по тому плану, который был записан в закодированном виде на определенном участке ДНК. Таким образом, ДНК представляет собой отправную точку всего этого запрограммированного процесса.
В процессе жизнедеятельности белки постоянно расходуются, и потому они регулярно воспроизводятся по описанной схеме, весь синтез белковой молекулы, состоящей из сотен аминокислот, проходит в живом организме приблизительно в течение одной минуты.
Первые исследования нуклеиновых кислот были проведены во второй половине 19 в., понимание того, что в ДНК зашифрована вся информация о живом организме, пришло в середине 20 в., структуру двойной спирали ДНК установили в 1953 Дж.Уотсон и Ф.Крик на основании данных рентгеноструктурного анализа, что признано крупнейшим научным достижением 20 столетия. В середине 70-х годов 20 в. появились методики расшифровки детальной структуры нуклеиновых кислот, а вслед за тем были разработаны способы их направленного синтеза. Сегодня ясны далеко не все процессы, происходящие в живых организмах с участием нуклеиновых кислот, и сегодня это одна из самых интенсивно развивающихся областей науки.
Михаил Левицкий
Как и для чего делают ДНК тест?
Так как ДНК содержится в каждой клетке нашего тела, изучая генетический материал – кровь, кожу, волосы, слюну и т.п. – с помощью принципов микробиологии – ученые могут узнать владельца конкретной ДНК. Однако для получения точных результатов специалисты советуют сдать кровь из вены. Сегодня анализ ДНК позволяет определить наследственную предрасположенность к разным заболеваниям, которыми страдали или страдают родственники человека. Одним из таких заболеваний является шизофрения – в своей предыдущей статье я подробно рассказывала о том, почему эту болезнь так сложно лечить и изучать.
Более того, проанализировав ДНК специалисты могут рассказать о том, какие заболевания могут возникнуть у человека в будущем, определить индивидуальную непереносимость лекарств, склонность к наркомании и алкоголизму и многое другое.
ДНК есть у всех живых организмов.
Наиболее распространенным тестом ДНК является метод полимеразной цепной реакции или ПЦР. На сегодняшний день это один из новейших и наиболее точных способов диагностики. Несмотря на то, что этот метод до сих пор считается экспериментальным, он широко и успешно применяется в медицине. Так, большинство тестов на наличие/отсутствие в организме нового коронавируса SARS-CoV-2, которые проводятся во всем мире, являются именно ПЦР-тесты. Метод ПЦР в 1993 году разработал ученый Кэри Муллис, который получил за свое открытие Нобелевскую премию. Суть метода заключается в применении особых ферментов, которые много раз копируют фрагменты ДНК возбудителей болезни (как, например, с коронавирусом) которые можно обнаружить в пробах генетического материала, например в крови. Затем специалисты сверяют полученные фрагменты с базой данной, что позволяет выявить тип возбудителя болезни и его количество в организме.
Так выглядит амплификатор
Однако выявление и определение склонности к заболеваниям не является единственной областью, в которой прибегают к использованию тестов ДНК. Так, появление ДНК-тестов – как в свое время дактилоскопия (метод определения отпечатков пальцев) – изменило криминалистику. Благодаря анализу ДНК следователи имеют возможность собрать генетический материал преступника и поймать его. Но самое популярное использование ДНК-тестов – определение отцовства. Возможно дело в том, что этот анализ позволяет получить практически 100% результат. Недавно мой коллега Николай Хижняк в своей статье подробно рассказал о будущих возможностях исследования ДНК, рекомендую к прочтению.
Подводя черту отмечу, что сегодня загадка кода ДНК еще не раскрыта. Мы стоим в самом начале познания, что же это такое на самом деле? Приоткрыв небольшую щелочку двери мы можем только догадываться о том, какие перспективы в будущем для человека может открыть понимание что такое ДНК и как мы можем использовать эти знания!
ДНК (дезоксирибонуклеиновая кислота)
ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.
ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.
Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.
ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.
Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.
Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.
Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.
Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.
Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.
Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.
В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.
Таким образом,
- ТИМИН (Т) комплементарен АДЕНИНУ (А),
- ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).
Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.
Репликация ДНК
Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.
Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.
После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.
После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.
Таким образом, сохраняется и передается новому поколению исходная структура ДНК.
Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.
Видеофильм «ДНК. Код Жизни»
Рубрики: Нуклеиновые кислоты
Что такое РСБУ в бухгалтерии
В первую очередь определимся, как расшифровывается данная аббревиатура. РСБУ (расшифровка) — российские стандарты бухгалтерского учета. Следовательно, РС бухучета — это совокупность законодательных и нормативно-правовых актов, утвержденных на федеральном, региональном и муниципальном уровнях, которые устанавливают строгие правила ведения бухучета, а также составления отчетности. Основные требования, правила и способы ведения БУ разрабатывает Министерство финансов России.
Отметим, что российские стандарты применимы к организации и ведению бухучета практически во всех экономических субъектах. Исключением является организации банковской системы. Для банков и кредитно-финансовых компаний знание РСБУ необязательно, так как особенности учета и формирования бухотчетности для них устанавливает Центральный банк России. Однако, ЦБ РФ разрабатывает требования к ведению БУ на основании правил, которые утверждает Минфин РФ.
Деление по особенностям
В зависимости от субъединичного состава РНК-полимеразы делятся на две группы:
- Первая занимается транскрибированием небольшого числа генов в простых геномах. Для функционирования в данном случае не требуются сложные регуляторные воздействия. Поэтому сюда относят все ферменты, которые состоят всего лишь из одной субъединицы. В качестве примера можно навести РНК-полимеразы бактериофагов и митохондрий.
- К этой группе относят все РНК-полимеразы эукариот и бактерий, которые являются сложно устроенными. Они представляют собой запутанные многосубъединичные белковые комплексы, что могут транскрибировать тысячи разных генов. Во время функционирования эти гены реагируют на большое количество регуляторных сигналов, что поступают от белковых факторов и нуклеотидов.
Подобное структурно-функциональное разделение является весьма условным и сильным упрощением реального положения дел.
Рибосомальная рибонуклеиновая кислота
Такие молекулы составляют подавляющее большинство клеточных РНК, а именно от восьмидесяти до девяноста процентов от общего количества. Они соединяются с белками и формируют рибосомы — это органоиды, выполняющие синтез белков.
Рибосомы состоят на шестьдесят пять процентов из р-РНК и на тридцать пять процентов из белка. Эта полинуклеотидная цепь без труда изгибается вместе с белком.
Рибосома состоит из аминокислотного и пептидного участков. Они расположены на контактирующих поверхностях.
Рибосомы свободно передвигаются в клетке, синтезируя белки в нужных местах. Они не очень специфичны и могут не только считывать информацию с и-РНК, но и образовывать с ними матрицу.
Способы выделения
Гелеобразный осадок нуклеиновой кислоты
Описаны многочисленные методики выделения нуклеиновых кислот из природных источников. Основными требованиями, предъявляемыми к методу выделения, являются эффективное отделение нуклеиновых кислот от белков, а также минимальная степень фрагментации полученных препаратов. Классический метод выделения ДНК был описан в 1952 году и используется в настоящее время без значительных изменений. Клеточные стенки исследуемого биологического материала разрушаются одним из стандартных методов, а затем обрабатываются анионным детергентом. При этом белки выпадают в осадок, а нуклеиновые кислоты остаются в водном растворе. ДНК может быть осаждена в виде геля осторожным добавлением этанола к её солевому раствору. Концентрацию полученной нуклеиновой кислоты, а также наличие примесей (белки, фенол) обычно определяют спектрофотометрически по поглощению на А260 нм.
Нуклеиновые кислоты легко деградируют под действием особого класса ферментов — нуклеаз
В связи с этим при их выделении важно обработать лабораторное оборудование и материалы соответствующими ингибиторами. Так, например, при выделении РНК широко используется такой ингибитор рибонуклеаз как DEPC.
Чтобы не распасться, нужно стабилизироваться
А что, если мы зададимся не вопросом, почему какие-то РНК быстро распадаются, а почему другие живут долго? Может быть, РНК-долгожители не деградируют, потому что содержат сигналы, защищающие их от быстрого разрушения? Действительно, совсем недавно выяснилось, что многие долгоживущие мРНК имеют в своем составе определенные мотивы, с которыми взаимодействуют белки-стабилизаторы. Пока известно восемь таких элементов и изучена их связь с белком со сложным названием HNRPA2B1. Этот белок обеспечивает удлинение времени жизни соответствующей мРНК. Вероятно, существуют и другие подобные белки, которые еще только предстоит обнаружить. Кроме того, пока остается открытым вопрос, как именно работает механизм защиты РНК от деградации .
Пцр диагностика вирусного гепатита с
Количественная ПЦР – молекулярно-биологический анализ, при котором подсчитывается количество генетического материала возбудителя в крови. Исследование на гепатит С (количественно) выполняется после подтверждения диагноза для определения вирусной нагрузки. Полимеразная цепная реакция характеризуется высокой специфичностью и чувствительностью. Поэтому анализ считается золотым стандартом в диагностике гепатита С.
Среди воспалительных заболеваний, поражающих печень, особую угрозу для жизни человека представляет гепатит С. Причиной заражения может стать нарушение правил стерильности во время процедуры переливания крови. Намного реже инфицирование происходит в результате полового контакта, а также во время родов, когда болеющая мать заражает новорожденного.
Коварство гепатита С в длительном отсутствии симптомов, которые могли бы помочь раньше начать лечение. Обычно признаки проявляются, когда болезнь переходит в самую тяжелую стадию, а цирроз или карциному уже сложно вылечить.
С переходом острого гепатита в стадию хронической патологии, возможны следующие варианты развития болезни:
- каждый пятый пациент выздоравливает после вовремя назначенного лечения;
- часть больных переходит в группу носителей вируса (неактивная форма хронического заболевания);
- у остальных заболевших прогресс хронической фазы подтверждают признаки поражения печени.
Момент перехода острого этапа в хроническую форму зафиксировать сложно. Причина в постепенном нарастании симптомов медленного поражения печени с отсутствием признаков желтухи.
Проявления HCV часто маскируются под симптоматику других заболеваний: повышенная температура, утомляемость, отсутствие аппетита. Потеря веса сопутствует скрытому прогрессированию болезни на протяжении десятков лет.
Популяция вируса скрытно поражает клеточную структуру крови, страдает также печень. Обнаружить фрагменты РНК возбудителя удается только при помощи ПЦР тестирования образцов крови на гепатит С.
Современные методики лечения новейшими препаратами позволяют не только вылечить патологию, но также избавить организм от вируса. Для этого необходимо установить его генотип и уровень концентрации в организме пациента.
Тест-системы некоторых лабораторий не оснащены соответствующими реагентами. Отсутствие возможности детерминирования субтипов генома приводит к выдаче результатов о невозможности типирования РНК.
В этом случае необходимо подтверждение диагноза методами дополнительных исследований с использованием основных маркеров гепатита. Обнаружение в крови человека иммуноглобулинов М и G сигнализирует о развитии в организме процесса, не характерного для здорового состояния.
Инфицирование печени приводит к серьезным последствиям, особенно если речь идет о гепатите С. Это заболевание протекает бессимптомно и почти не поддается лечению, за что прозвано «ласковым убийцей». Достаточно одного контакта с кровью инфицированного человека, чтобы заразиться.
Вирус HСV может никак себя не проявить даже после инкубационного периода. Однако у некоторых больных всё же наблюдаются характерные симптомы гепатита С: вялость, боли в животе, боль в суставах, отсутствие аппетита, рвота, осветление кала, потемнение мочи, желтуха. Как правило, они появляются спустя 6–7 недель после инфицирования.
Для подтверждения или опровержения диагноза необходимо сдать кровь на анализ. Сначала делается скрининг-тест на наличие антител к вирусу HСV. (эти белковые вещества вырабатываются иммунной системой). Если результат положительный, исследование продолжается. Применяется метод полимеразной цепной реакции (ПЦР), отличающийся высокой точностью.
Положительный анализ на гепатит С – крайне тревожный сигнал, который говорит о развитии болезни, способной спровоцировать развитие цирроза, рака печени или другого смертельно опасного недуга.
Вирусный гепатит опасен тем, что может не давать о себе знать десятилетиями, постепенно разрушая печень человека и подвергая опасности окружающих. Расшифровка анализа на вирусную нагрузку при гепатите С позволяет обнаружить эту болезнь на раннем этапе.
Это значит, что есть возможность вовремя начать лечение заболевания: чем раньше это сделать, тем выше шансы на полное выздоровление.
Вирусная нагрузка — это показатель, который отражает концентрацию вируса гепатита С в крови. Он определяется при помощи анализа, проводящегося по методике ПЦР, синонимом является РНК ВГС или RNA HCV.
Строение
Фрагмент полимерной цепочки ДНК
Полимерные формы нуклеиновых кислот называют полинуклеотидами.
Существуют 4 уровня структурной организации нуклеиновых кислот: первичная, вторичная, третичная и четвертичная. Первичная структура представляет собой цепочки из нуклеотидов, соединяющихся через остаток фосфорной кислоты (фосфодиэфирная связь). Вторичная структура — это две цепи нуклеиновых кислот соединённые водородными связями. Стоит отметить, что цепи соединяются по типу «голова-хвост» (3′ к 5′), по принципу комплементарности (азотистые основания находятся внутри этой структуры). Третичная структура, или же спираль, образуется за счет радикалов азотистых оснований (образуются водородные дополнительные связи, которые и сворачивают эту структуру, тем самым обуславливая её прочность). И наконец 4 структура — это комплексы гистонов и нитей хроматина.
Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).
Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, аденозинтрифосфорная кислота, важнейший аккумулятор энергии в клетке.