Чем отличается днк от рнк

Разница между ДНК и мРНК

Определение

ДНК: ДНК является самореплицирующейся молекулой, присутствующей во всех живых организмах, несущей генетическую информацию.

мРНК: мРНК является подтипом РНК, которая создается путем транскрипции и определяет аминокислотную последовательность белка.

ДНК: ДНК относится к дезоксирибонуклеиновой кислоте.

мРНК: МРНК относится к мессенджеру РНК.

Нуклеотиды

ДНК: ДНК состоит из нуклеотидов ДНК; аденин (A), гуанин (G), цитозин (C) и тимин (T).

мРНК: МРНК состоит из нуклеотидов РНК; аденин (A), гуанин (G), цитозин (C) и урацил (U).

ДНК: ДНК содержит дезоксирибозные сахара.

мРНК: мРНК содержит рибозные сахара.

ДНК: ДНК синтезируется во время репликации ДНК.

мРНК: мРНК синтезируется путем транскрипции гена.

ДНК: ДНК-полимераза участвует в синтезе ДНК.

мРНК: РНК-полимераза участвует в синтезе мРНК.

Место нахождения

ДНК: ДНК находится внутри ядра у эукариот и в цитоплазме прокариот.

мРНК: мРНК продуцируется внутри ядра и транспортируется в цитоплазму у эукариот.

ДНК: ДНК представляет собой двухцепочечную молекулу.

мРНК: мРНК представляет собой одноцепочечную молекулу.

ДНК: ДНК представляет собой двойную спираль.

мРНК: мРНК может быть найдена в структуре стволовой петли.

Молекулярный вес

ДНК: ДНК представляет собой большую молекулу со сравнительно высокой молекулярной массой.

мРНК: мРНК является меньшей молекулой по сравнению с ДНК.

функция

ДНК: ДНК хранит генетическую информацию организма.

мРНК: мРНК несет инструкцию о аминокислотной последовательности белка.

ДНК: ДНК более подвержена повреждению ультрафиолетом.

мРНК: мРНК более устойчива к ультрафиолету.

Заключение

ДНК и мРНК являются наиболее распространенными нуклеиновыми кислотами в клетке. ДНК состоит из нуклеотидов ДНК, тогда как мРНК состоит из нуклеотидов РНК. ДНК представляет собой двухцепочечную молекулу, которая служит генетическим материалом клетки. мРНК представляет собой одноцепочечную молекулу, которая несет информацию о аминокислотной последовательности белка. Основное различие между ДНК и мРНК заключается в структуре и функции каждого типа молекулы в клетке.

Ссылка:

1. «Что такое ДНК? — Genetics Home Reference. ”Национальная медицинская библиотека США, Национальные институты здоровья,

Что пришло первым?

Хотя есть некоторые доказательства того, что ДНК, возможно, возникла первой, большинство ученых считают, что РНК развивалась до ДНК. РНК имеет более простую структуру и необходима для функционирования ДНК. Также РНК обнаружена у прокариот, которые, как полагают, предшествуют эукариотам. РНК сама по себе может служить катализатором определенных химических реакций.

Реальный вопрос в том, почему эволюционировала ДНК, если существовала РНК. Наиболее вероятным ответом на это является то, что наличие двухцепочечной молекулы помогает защитить генетический код от повреждения. Если одна нить сломана, другая может служить шаблоном для ремонта. Белки, окружающие ДНК, также обеспечивают дополнительную защиту от ферментативной атаки.

Что такое ДНК?

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, которая  хранит в себе и передает из поколения в поколение наследственную информацию. В клетках же основная функция молекулы ДНК – это сохранение точной информации о строении белков и РНК. У животных и растений молекула ДНК содержится в составе ядра клетки, в хромосомах.  Чисто с химической точки зрения молекула ДНК состоит из фосфатной группы и азотистого основания. В пространстве она представлена как две спирально закрученные нити. Азотистые основания – это аденин, гуанин, цитозин и тимин, причем соединяются они между собой только по принципу комплиментарности – гуанин с цитозином, а аденин с тимином. Расположение нуклеотидов в различной последовательности позволяет кодировать различную информацию о типах РНК, участвующих в процессе синтеза белка.

Основное различие — ДНК против нуклеотидов РНК

Нуклеотиды ДНК и РНК являются мономерами ДНК и РНК соответственно. Нуклеотидами ДНК являются аденин, гуанин, цитозин и тимин. РНК содержит урацил вместо тимина. ДНК широко используется в качестве генетического материала организмами. РНК используется в экспрессии генов. главное отличие между ДНК и РНК нуклеотидами является то, что Нуклеотиды ДНК содержат дезоксирибозу в качестве пентозного сахара, в то время как РНК-нуклеотиды содержат рибозу в качестве пентозного сахара в молекуле.

Эта статья смотрит на,

1. Что такое нуклеотиды ДНК? — определение, характеристики, функции2. Что такое РНК Нуклеотиды — определение, характеристики, функции3. В чем разница между ДНК и нуклеотидами РНК?

Структура

ДНК и РНК являются нуклеиновыми кислотами. Нуклеиновые кислоты — это длинные биологические макромолекулы, которые состоят из более мелких молекул, называемых нуклеотидами. В ДНК и РНК эти нуклеотиды содержат четыре нуклеиновых основания — иногда называемые азотистыми основаниями или просто основаниями — по два пуриновых и пиримидиновых основания каждое.

ДНК находится в ядре клетки (ядерная ДНК) и в митохондриях (митохондриальная ДНК). Он имеет две нуклеотидные цепи, которые состоят из его фосфатной группы, пятиуглеродного сахара (стабильная 2-дезоксирибоза) и четырех азотсодержащих нуклеобаз: аденин, тимин, цитозин и гуанин.

Во время транскрипции образуется РНК, одноцепочечная, линейная молекула. Это дополняет ДНК, помогая выполнять задачи, которые перечисляет ДНК для этого. Как и ДНК, РНК состоит из ее фосфатной группы, пятиуглеродного сахара (менее стабильной рибозы) и четырех азотсодержащих нуклеиновых оснований: аденина, урацила ( не тимина), гуанина и цитозина.

В обеих молекулах нуклеиновые основания присоединены к их сахарофосфатному остову. Каждая нуклеиновая основа на нуклеотидной цепи ДНК присоединяется к своей партнерской нуклеиновой основе на второй цепи: адениновые связи с тимином и цитозиновые связи с гуанином. Эта связь заставляет две нити ДНК вращаться и обвиваться вокруг друг друга, образуя различные формы, такие как знаменитая двойная спираль («расслабленная» форма ДНК), круги и суперскрутки.

В РНК аденин и урацил ( не тимин) связываются вместе, в то время как цитозин все еще связывается с гуанином. Как одноцепочечная молекула, РНК складывается сама по себе, чтобы связать свои нуклеиновые основания, хотя не все становятся партнерами. Эти последующие трехмерные формы, наиболее распространенной из которых является петля шпильки, помогают определить, какую роль должна играть молекула РНК — в качестве мессенджерной РНК (мРНК), транспортной РНК (тРНК) или рибосомальной РНК (рРНК).

Строение и функции РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3′-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

ДНК – хранитель генетической информации

Организмы используют расстановку нуклеотидов ДНК для кодирования информации, указывающей аминокислотную последовательность первичной структуры их белков. Этот способ похож на то, как мы кодируем слова в предложении при помощи букв.

Предложение, написанное на русском языке, состоит из комбинации 33 букв алфавита в определённом порядке; код молекулы ДНК состоит из комбинации четырёх типов нуклеотидов в специфической последовательности: А, T, Г, Ц.

ДНК в организмах содержится в виде двух цепей, обёрнутых в виде спирали вокруг друг друга и вместе вокруг общей оси, либо в линейной форме, либо кольцевой у большинства прокариот, а также в хлоропластах и митохондриях эукариот. Исключение – одноцепочечная молекула ДНК некоторых фагов — вирусов, поражающих бактериальные клетки. Две нити ДНК соединены связями-перемычками, как винтовая лестница ступенями. Такая структура молекулы называется двойной спиралью. Каждый шаг винтовой лестницы ДНК состоит из пары оснований. Основание одной цепи притягивается водородной связью к основанию другой цепи.

Строение ДНК

Правила спаривания возникают из наиболее стабильной конфигурации водородного скрепления между двумя основаниями: пары аденина с тимином двумя водородными связями (в ДНК) или с урацилом (в РНК) и пары цитозина с гуанином — тремя водородными связями.

Основания, которые участвуют в сопряжении, дополняют друг друга, это свойство носит название комплементарности. Если известна последовательность оснований одной цепи ДНК, то благодаря специфичности их соединения, становится известна структура её партнёра — второй цепи.

Схема строения ДНК

В клетках эукариот ДНК дополнительно комплектуется с белками для формирования структур, называемых хромосомами. Это структуры более высокого порядка, которые влияют на функцию ДНК, поскольку участвуют в контроле за экспрессией генов.

Определение размеров молекул ДНК стало возможным только после изобретения методов электронной микроскопии, ультрацентрифугирования, электрофореза.

Расшифровка структуры ДНК имеет свою предысторию. В 1950 г. американский ученый Э. Чаргафф и его коллеги, исследуя состав молекулы ДНК, установили следующие закономерности, впоследствии названные правилами Чаргаффа.

  1. Количество адениловых нуклеотидов в молекуле ДНК равно количеству тимидиловых (А = Т), а количество гуаниловых — количеству цитидиловых (Г = Ц).
  2. Количество пуриновых азотистых оснований равно количеству пиримидиновых (А + Г = Т + Ц).
  3. Суммарное количество адениловых и цитидиловых нуклеотидов равно суммарному количеству тимидиловых и гуаниловых нуклеотидов (А + Ц = Т + Г), что следует из первого правила.

Это открытие способствовало установлению пространственной структуры ДНК и определению ее роли в передаче наследственной информации от одного поколения другому. В 1953 г. на основании правил Чаргаффа и данных о пространственной структуре молекулы ДНК, полученных английским биофизиком М. Уилкинсом, американский ученый Дж. Уотсон и англичанин Ф. Крик предложили трехмерную модель структуры ДНК, которая получила название «двойной спирали». За разработку модели молекулы ДНК Дж. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. были удостоены Нобелевской премии.

Параметры двойной спирали ДНК

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Дезоксирибонуклеиновая кислота

ДНК это биополимер. В основе мономера ДНК – пентоза. Углевод ДНК является исключением из правил, ведь его формула (C5H10O4) отличается от «нормального» углевода тем, что в ней отсутствует один атом кислорода, поэтому этот углевод получил название «дезоксирибоза».

К остатку дезоксиробозы присоединено одно азотистое основание (цитозин, тимин, аденин и гуанин). Полимерная цепь ДНК образуется путем связывания между собой мономеров. Сшиваются между собой соседние «звенья» остатками фосфорной кислоты, образуя фосфодиэфирную 3’-5’ – связь.

ДНК – это двойная антипараллельная правозакрученная спираль. Две цепи соединены водородными связями, которые возникающими между гетероциклическими соединениями. В ДНК комплементарные пары: A-G и C-T.

Уникальность ДНК в том, что она способна создавать дочернюю молекулу (репликация
). Для этого спираль ДНК расходится на две материнские цепи и с помощью ферментов (основной фермент это ДНК-полимераза) на них выстраиваются дочерние цепи, основываясь на правиле комплементарности. В итоге образуется две идентичные друг другу цепи ДНК. Этот процесс обеспечивает безошибочную передачу наследственной информации из поколения в поколение.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Азотистые основания

Рассмотрим еще одно различие молекул ДНК и РНК. Оно также влияет на свойства данных веществ. В структуру мономеров ДНК входит один из четырех остатков азотистых оснований: аденин, гуанин, цитозин, тимин. Размещаются они согласно определенному правилу.

В молекуле ДНК, которая состоит из двух спирально закрученных цепей, напротив аденилового основания всегда находится тимидиловый, а гуаниловому соответствует цитидиловый. Это правило называется принципом комплементарности. Между аденином и гуанином всегда образуются две, а между гуанином и цитозином — три водородные связи.

Совсем по-другому обстоит дело с рибонуклеиновой кислотой. Вместо тимина в ее состав входит другое азотистое основание. Оно называется урацил. Стоит сказать, что, по сравнению с ДНК, РНК существенно меньших размеров, поскольку состоит из одной спиральной молекулы.

Сходства между экстракцией ДНК и РНК

  • Выделение ДНК и РНК — это процедуры, связанные с выделением и очисткой нуклеиновых кислот из биологических образцов.
  • Обе процедуры включают лизис клеток, очистку нуклеиновых кислот от мусора и связанных белков и подготовку экстрактов.
  • Для обеих процедур необходимо поддерживать холодные условия во всем.
  • Вовлекает центрифугирование в разделение компонентов в смеси.
  • Необходимо инактивировать активность нуклеазных ферментов во время обеих процедур.
  • Экстракция фенол-хлороформом является одним из важнейших этапов обоих типов экстракций.
  • Тиоцианат гуанидиния может быть использован для защиты нуклеиновых кислот.
  • Осаждение РНК может быть сделано с изопропанолом.
  • Ионная сила ацетата натрия используется для улучшения осаждения нуклеиновых кислот.
  • Образцы могут быть количественно определены путем измерения оптической плотности при 260 нм.

Что такое мРНК

МРНК (мессенджер РНК) относится к подтипу РНК, который создается путем транскрипции и определяет аминокислотную последовательность белка. Следовательно, это транскрипт гена. У эукариот мРНК продуцируется внутри ядра и транспортируется в цитоплазму. Фермент, ответственный за синтез мРНК во время транскрипции, представляет собой РНК-полимеразу. Молекула мРНК состоит из нуклеотидов РНК. Аденин (A), гуанин (G), цитозин (C) и урацил (U) являются четырьмя нуклеотидами РНК, найденными в молекуле мРНК. Вновь синтезированная мРНК называется пре-мРНК, который подвергается посттранскрипционным модификациям с образованием зрелой молекулы мРНК. Он включает в себя добавление 5 ‘шапки, редактирование и полиаденилирование. Структура зрелой молекулы мРНК показана на фигура 2.

Рисунок 2: зрелая мРНК

Колпачок 7-метилгуанозина добавляют к передней части 5′-конца. Во время редактирования мРНК некоторые нуклеотиды могут быть изменены. Поли (А) хвост, который содержит около 250 аденозиновых остатков, добавляется на 3′-конце молекулы мРНК, чтобы защитить его от деградации экзонуклеазами. С другой стороны, пре-мРНК эукариот состоит из интронов и экзонов. Альтернативный сплайсинг — это еще один процесс, с помощью которого различные комбинации экзонов сплайсируются вместе для получения нескольких типов белков из одной молекулы пре-мРНК. МРНК прокариот способна продуцировать белок одного типа после трансляции. Функция молекулы мРНК показана на рисунок 3.

Рисунок 3: Роль мРНК в клетке

Зрелые молекулы мРНК экспортируются через ядерные поры в цитоплазму. Зрелая мРНК транслируется в аминокислотную последовательность конкретного белка в процессе, называемом трансляцией. Трансляция облегчается рибосомами в цитоплазме. Транскрипция последовательности ДНК в молекулу мРНК и перевод молекулы мРНК в белок называются центральной догмой молекулярной биологии. Кодирующая область каждой молекулы мРНК состоит из кодонов, которые представляют собой три нуклеотида, представляющих определенную аминокислоту полипептидной цепи.

Различия ДНК и РНК

  1. В основе мономеров дезоксирибонуклеиновой и рибонуклеиновой кислот – углевод – пентоза и рибоза соответственно.
  2. ДНК в своем составе содержит азотистое основание (пиримидиновое основание) – тимин, а РНК – урацил (отсутствует метильная группа).
  3. ДНК – двойная антипараллельная правозакрученная спираль, а РНК – одиночная цепь.
  4. ДНК способна удваиваться, а РНК – нет.
  5. Основные функции ДНК: Хранение, передача и реализация наследственной информации из поколения в поколение.

Основные функции РНК: Хранение генетической информации и синтез белка в клетке.

Молекула ДНК превышает в своих размерах и массе молекулу РНК.

Изначально людям казалось, что фундаментальной основой жизни являются белковые молекулы. Однако, научные исследования позволили выявить тот важный аспект, который отличает живую природу от неживой: нуклеиновые кислоты.

Функция нуклеиновых кислот

Информация о магазине нуклеиновых кислот, как компьютерный код

Безусловно, наиболее важной функцией нуклеиновых кислот для живых организмов является их роль носителя информации. Поскольку нуклеиновые кислоты могут быть созданы с четырьмя «основаниями» и поскольку «правила спаривания оснований» позволяют «копировать» информацию, используя одну цепь нуклеиновых кислот в качестве шаблона для создания другой, эти молекулы способны как содержать, так и копировать информацию

Поскольку нуклеиновые кислоты могут быть созданы с четырьмя «основаниями» и поскольку «правила спаривания оснований» позволяют «копировать» информацию, используя одну цепь нуклеиновых кислот в качестве шаблона для создания другой, эти молекулы способны как содержать, так и копировать информацию.

Чтобы понять этот процесс, может быть полезно сравнить код ДНК с двоичным кодом, используемым компьютерами. Два кода очень разные по своей специфике, но принцип один и тот же. Так же, как ваш компьютер может создавать целые виртуальные реальности, просто считывая строки 1 и 0, клетки могут создавать целые живые организмы, считывая строки из четырех пар оснований ДНК.

Как вы можете себе представить, без бинарного кода у вас не было бы компьютера и компьютерных программ. Точно так же живые организмы нуждаются в неповрежденных копиях своего «исходного кода» ДНК, чтобы функционировать.

Параллели между генетический код и двоичный код даже побудил некоторых ученых предложить создание «генетических компьютеров», которые могли бы хранить информацию гораздо более эффективно, чем жесткие диски на основе кремния. Однако, поскольку наша способность записывать информацию о кремнии возросла, мало внимания уделялось исследованиям «генетических компьютеров».

Защита информации

Поскольку исходный код ДНК так же важен для клетка поскольку ваша операционная система находится на вашем компьютере, ДНК должна быть защищена от возможного повреждения. Чтобы транспортировать инструкции ДНК в другие части клетки, копии ее информации делаются с использованием другого типа нуклеиновой кислоты – РНК.

Это РНК-копии генетической информации, которые отправляются из ядра и вокруг клетки для использования в качестве инструкций клеточным механизмом.

Клетки также используют нуклеиновые кислоты для других целей. Рибосомы – клеточные машины, которые производят белок – и некоторые ферменты сделаны из РНК.

ДНК использует РНК как своего рода защитный механизм, отделяющий ДНК от хаотической среды цитоплазма, Внутри ядра ДНК защищена. За пределами ядра движения органелл, везикул и других клеточных компонентов могут легко повредить длинные и сложные нити ДНК.

Тот факт, что РНК может действовать как в качестве наследственного материала, так и в качестве фермента, подтверждает идею о том, что самой первой жизнью могла быть самореплицирующаяся, самокатализирующаяся молекула РНК.

Основное отличие — ДНК против РНК-вирусов

Вирус — это биологический агент, который может самовоспроизводиться внутри клетки-хозяина. Зараженные клетки вирусами могут производить тысячи новых копий исходного вируса с необычайной скоростью. Генетическим материалом вируса может быть либо ДНК, либо РНК. Вирусы, которые содержат ДНК в качестве своего генетического материала, называются ДНК-вирусами. РНК-вирусы, с другой стороны, содержат РНК в качестве своего генетического материала. Генетический материал покрыт белковым капсидом во всех вирусах. Некоторые вирусы содержат конверт, закрывающий капсид. После инфицирования хозяина репликация вирусной ДНК происходит внутри ядра, тогда как репликация вирусной РНК происходит в цитоплазме. главное отличие между ДНК и РНК-вирусами является то, что ДНК-вирусы содержат большие геномы благодаря точной репликации, тогда как РНК-вирусы содержат небольшие геномы из-за подверженной ошибкам репликации.

Ключевые области покрыты

1. Что такое ДНК-вирусы      — определение, классы, биосинтез2. Что такое РНК-вирусы      — определение, классы, биосинтез3. Каковы сходства между ДНК и РНК-вирусами      — Краткое описание общих черт4. В чем разница между ДНК и РНК-вирусами      — Сравнение основных различий

Ключевые слова: Балтиморская классификация, ДНК-вирусы, двухцепочечная ДНК, оболочка, РНК-вирусы, одноцепочечная ДНК

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином,  а  гуанин — с цитозином. Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—С — тремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′. В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Метод ПЦР

ПЦР — это метод полимеразной цепной реакции. О нем наслышаны многие, хотя до эпидемии значение аббревиатуры ПЦР было знакомо лишь криминалистам, генетикам, а также лабораторным работникам, определяющим ВИЧ, сифилис, гепатиты, туберкулез и еще ряд заболеваний.

Как работает ПЦР и какие бывают вирусы

ДНК — это двойная спираль, кодирующая генетическую информацию, в том числе, вирусов. Обе части ДНК соединены по принципу комплементарности. То есть, один элемент может соединяться только с соответствующим ему. Например, гуанин (G) только с цитозином(C). ДНК-содержащие вирусы — это вирус герпеса, оспы, гепатита В. Коронавирус относится к РНК-содержащим вирусам.

Для исследования методом ПЦР берется мазок из ротоглотки. Если в материал для анализа попала вирусная частица, то в лаборатории одна нить ее РНК достраивается до двойной спирали ДНК.

РИА Новости/Сергей Пивоваров

В чем суть метода ПЦР?

Вместо того, чтобы искать иголку в стоге сена (одну нить вирусной частицы), можно сделать целый «клубок» нитей, найти которые не составит труда. Нуклеотидная последовательность («буквы») РНК вируса уже расшифрована. И к этим «буквам» по принципу комплиментарности присоединяются в результате химической реакции другие. В итоге получается молекула ДНК. Она служит матрицей. Затем ее многократно размножают примерно по той же технологии. ДНК помещают в раствор со специальным набором химических веществ в устройство-амплификатор, в котором периодически меняется температура от 50 до 92 градусов. В нем, как в ксероксе, ДНК копируется.

Финальный этап исследования – электрофорез, на нем можно увидеть размноженные копии ДНК. ДНК заряжена отрицательно, и в электрическом поле ее притягивает положительный заряд. Притягиваясь к нему, размноженная ДНК проходит через краситель. Чем больше фрагмент ДНК, тем медленнее он двигается и тем ярче окрашивается.

Если в биоматериале пациента не было вирусной частицы, то и первая цепочка ДНК не выстроится – химическим веществам, подобранным для строительства, не за что будет «зацепиться». Соответственно, форез ничего не покажет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector